Grade 3 Operations and Algebraic Thinking Unit of Instruction

This is a progressive unit of instruction using the <u>Concrete-Representational-Abstract (CRA) Instructional Model</u>. CRA is a three-part instructional model that begins by using concrete materials, then progresses to representational pictures and finally abstract notation. This unit is not intended to replace your district's curriculum, but rather it serves to support the teaching and learning of the third grade operations and algebraic thinking standards. In this unit, students will begin by investigating the standards while using manipulatives to explore the concepts. Then, students will represent their learning through pictures, visuals and drawings. Finally, students will demonstrate their understanding through abstract notation and algorithms. This unit of study will cover the following standards <u>MAFS.3.OA.1.1</u>, <u>MAFS.3.OA.1.2</u>, <u>MAFS.3.OA.1.3</u>, <u>MAFS.3.OA.1.4</u>, <u>MAFS.3.OA.2.5</u>, <u>MAFS.3.OA.2.6</u>, <u>MAFS.3.OA.3.7</u>, <u>MAFS.3.OA.4.8</u> and <u>MAFS.3.OA.4.9</u>.

The unit begins with a list of resources and tools to assist in teaching operations and algebraic thinking. Then, each of the grade three operations and algebraic thinking standards is listed along with aligned instructional resources and formative assessments. The component of CRA is identified for each of the resources and formative assessments. The resources presented in this document may only cover portions of the aligned standard and represent a small sample of those available on <u>CPALMS</u>.

The Mathematical Practices are habits of mind that describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Practices should be infused during the course and will be assessed throughout the Grade 3 Mathematics FSA. More information about each Mathematical Practice can be found by clicking on the links below.

MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.

MAFS.K12.MP.2.1 Reason abstractly and quantitatively.

MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.

MAFS.K12.MP.4.1 Model with mathematics.

MAFS.K12.MP.5.1 Use appropriate tools strategically.

MAFS.K12.MP.6.1 Attend to precision.

MAFS.K12.MP.7.1 Look for and make use of structure.

MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

Operations and Algebraic Thinking

	1 Ansenda Desuría Ansenias Duenna Cindu Neuradou e des
A bibliography of children's literature with a focus on	1. Amanda Bean's Amazing Dream, Cindy Neuschwander
operations and algebraic thinking is provided. These books	2. The Doorbell Rang, Pat Hutchins
can be integrated into the lessons to connect	3. Each Orange Had 8 Slices, Paul Giganti
mathematics and literature	4. The Grapes of Math, Greg Tang
	5. The Hershey's Multiplication Book, Jerry Pallotta
	6. The Lion's Share, Matthew McElliot
	7. Sea Squares, Joy Hulme
	8. One Hungry Cat, Joanne Rocklin & Rowane Murphy
	9. 2 x 2 = Boo!, Loreen Leedy
3rd Grade Mathematics Course Description	Course descriptions provide an overview for a course and designate which
	standards are in that course. The course description includes resources for all 39
	standards within the 3rd grade mathematics course.
Hooray Arrays	This sequence of four lessons is designed to guide students through an
<u>Déjà vu Addition</u>	introduction to multiplication. Students learn to recognize repeated addition as
Array Addition	multiplication through the use of visual models. Students learn how arrays can be
I Array + You Array = Arrays!	used to represent equations.
Lesson Plans	
Concrete-Representational-Abstract	
Test Item Specifications	The Test Item Specifications indicate the alignment of items with the Florida
	Standards. Assessment limits are included in the specifications, which define the
	range of content knowledge in the assessment items for the standard. Sample
	items for each standard are also included in the specifications document.
Test Design Summary and Blueprint	The Test Design Summary and Blueprint shows the reporting categories with a
	corresponding weight for the 3rd Grade Mathematics FSA.
Florida Students	Resources specifically designed with students in mind are available on Florida
	Students. Florida Students is an interactive site that provides educational
	resources aligned to the Florida Standards.
3rd Grade Mathematics Parent Guide	The parent guide will support parents and families with children in Grade 3
	Mathematics.

MAFS.3.OA.1.1 Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7.

Cheezy Arrays	This lesson is a hands on activity that includes multiplication using arrays. The
Lesson Plan	lesson also serves as a great transition from repeated addition to multiplication.
Concrete	
<u>Hip, Hip, Array!</u>	Students will develop their understanding of arrays by building arrays using hands
Lesson Plan	on activities. Students will have the opportunity to play a game to practice their
	skills with arrays.
Concrete-Representational	
Just Group It	Students will be able to use counters to create equal groups and write
Lesson Plan	multiplication sentences.
Concrete-Representational	
Circles and Stars	This is an introductory lesson to prepare students to move from using repeated
Lesson Plan	addition to using grouping of numbers when solving multiplication problems.
	After completing this lesson, students would then begin a lesson using arrays for
Representational	equal groups.
How Many Circles? How Many Stars?	This lesson will give students a visual representation of multiplication and
Lesson Plan	repeated addition. It will also help students see multiplication as the combining of
	equal-size groups that can be represented with a multiplication equation.
Let's Multiply Using Groups and Arrays	In this lesson, students will use pictures in arrays and groups to write
Lesson Plan	the factors and products
Depresentational Abstract	the factors and products.
Kepresentational-Abstract	Chudente will be us here multiplication is related to use studied difficus and here to
	scudents will learn now multiplication is related to repeated addition and now to
	use unterent strategies to find the product.
Representational-Abstract	

Each Orange Had 8 Slices: Multiplying Equal Groups	Students will learn how to represent and count equal groups through the use of
Lesson Plun	interature and situational story problems. Using the story Each Orange Hud 8
	<i>Slices,</i> students will use manipulatives to create arrays to calculate.
Concrete-Representational-Abstract	
Arrays Show the Way to the Multiplication Chart	Students build arrays and save the arrays in a class Multiplication Chart. They
Lesson Plan	learn to use arrays to find products and factors. By placing the arrays in the
	Multiplication Chart, they learn how to read the chart. They learn how to write
Concrete-Representational-Abstract	equations relative to the number of rows and items in the row.

Multiplication on the Number Line	Students are asked to explain how to use a number line for multiplying, in the
Democratic and Alexand	
Representational-Abstract	
Interpreting Multiplication	Students are asked to explain what 5 x 7 means and to provide a real-world
	context for 5 x 7.
Abstract	
What Does the 21 Mean?	Students are given a context for a multiplication problem and asked to determine
	how to solve it and what the product means.
Abstract	
Writing Multiplication Word Problems	Students are asked to write multiplication word problems prompted by pictures
	and then to write both an addition and a multiplication expression that can be
Abstract	used to solve the problem.

<u>MAFS.3.OA.1.2</u> Interpret whole-number quotients of whole numbers, e.g., interpret 56 \div 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 \div 8.

Pet Store Partitive Division	In this lesson students will model partitive division through the real-world activity
Lesson Plan	of a pet store owner.
Concrete-Representational-Abstract	
Everybody Wins!	The lesson in narrative form gives students experience with the partitioning
Lesson Plan	(sharing) model of division. The context for the lesson is Sheila Bruce's book
	Everybody Wins!, in which Oscar, Emmy, Hugo, and Tony calculate how to share
Concrete-Representational	pizzas, baseball tickets, bubble gum and more.
Solve Division Problems by Subtracting Equal Groups	In this lesson, the learners will learn how to solve division problems by repeatedly
Tutorial	subtracting equal groups.
Representational-Abstract	

Using a Number Line to Solve a Division Problem	Students are asked to explain how to use a number line for dividing, in the context of a word problem.
Representational-Abstract	
What Does the 6 Mean?	Students are given a division word problem and asked to determine how it might have been solved and what the quotient means.
Abstract	
Writing a Problem with a Quotient	Students are asked to solve a division equation and then interpret the quotient by writing a word problem that can be modeled by the equation.
Abstract	

MAFS.3.OA.1.3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Bridging Addition and Multiplication with Word Problems	This introductory lesson uses word problems to help students make connections
Lesson Plan	between arrays and multiplication with single and/or two-digit quantities within
	100.
Representational	
Array to Multiply	In this lesson, students will understand the concept of arrays and will be able to
Lesson Plan	create and draw an array for multiplication sentences. An engaging center game
	is used to help students with the concrete and visual representation of
Representational-Abstract	multiplication sentences.
Apples, Oranges, and Bananas of Math?	In this lesson, the students will work independently or in small groups to write
Lesson Plan	their own math riddles around the concepts of multiplication. The teacher will
	use the book, The Grapes of Math by Greg Tang, to support this lesson.
Representational-Abstract	
Chip Chip Array!	This lesson will have students working together to create arrays to represent
Lesson Plan	given multiplication problems.
Representational-Abstract	
Array Frame, Your Best Friend	In this lesson, students will learn to use the structure of array frames to build
Lesson Plan	familiarity and fluency with the array as a tool. Students will solve several
	multiplication word problems using the array as a representation.
Representational-Abstract	
Make Your Way with Arrays	Students will solve multiplication and division word problems by drawing arrays
Lesson Plan	and writing the related equation.
Concrete-Representational-Abstract	
Magnificent, Amazing Multiplication Arrays!	In this lesson students will be creating, describing, and analyzing arrays as they
Lesson Plan	relate to multiplication. In addition, they will be working on hands-on activities
	that allow them to justify their answers and prove their reasoning.
Concrete-Representational-Abstract	

Finding an Unknown Product Abstract	Students are asked to model equal groups and an array problem in which the product is unknown with multiplication or division equations and then solve each problem.
Finding the Group Size Abstract	Students are asked to model equal groups and an array problem in which the group size is unknown with multiplication or division equations and then solve each problem.
Finding the Number of Groups Abstract	Students are asked to model equal groups and an array problem in which the number of groups is unknown with multiplication or division equations and then solve each problem.
Measurement Problems Abstract	Students are asked to model a multiplication and a division problem that involve measurement quantities with multiplication and division equations and then solve each problem.

<u>MAFS.3.OA.1.4</u> Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48$, $5 = [] \div 3$, $6 \times 6 = ?$.

Discovering the Mystery Factor Through Arrays	Students will begin with the use of manipulatives to solve for unknown factors by
Lesson Plan	building arrays. They will progress to drawn models as mastery is shown with
	manipulatives.
Concrete-Representational	
Giddy Up, Round Up: Relating Division to Multiplication	In this lesson, students will learn to solve division problems by relating them to
Lesson Plan	multiplication facts. Practice materials focus on the 6's and 8's multiplication
	facts.
Representational-Abstract	
Tasty Algebra: Using Cereal to Find Missing Factors	In this lesson students will use cereal pieces to solve multiplication equations that
Lesson Plan	include missing factors ranging from one through ten. Students will also argue the
	validity of multiplication equations that include missing factors and products with
Concrete-Representational-Abstract	corresponding word problems.

Find the Unknown Number	Students are given multiplication and division equations within 50 and are asked
Abstract	to find missing numbers. The missing numbers are presented in an positions.
Missing Numbers in Division Equations	Students are given division equations involving numbers within 50 and are asked to find missing numbers. The missing numbers are presented in all positions.
Abstract	
Multiplication and Division Equations	Students are given multiplication and division equations within 100 and are asked to find the missing numbers. The missing numbers are presented in all positions.
Abstract	

<u>MAFS.3.OA.2.5</u> Apply properties of operations as strategies to multiply and divide. *Examples: If* $6 \times 4 = 24$ *is known, then* $4 \times 6 = 24$ *is also known. (Commutative property of multiplication.)* $3 \times 5 \times 2$ *can be found by* $3 \times 5 = 15$, *then* $15 \times 2 = 30$, *or by* $5 \times 2 = 10$, *then* $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, *one can find* 8×7 *as* $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.)

Partial Products with Arrays	In this inquiry based lesson, students will find partial products of arrays to solve
Lesson Plan	multiplication problems. They will also move from a concrete representation of
	arrays using manipulatives to a pictorial representation.
Concrete-Representational	
Candy Apple Fun	In this lesson, students will learn how to break down simple multiplication
Lesson Plan	problems by using arrays to model the Distributive Property.
Representational-Abstract	
Decomposing Arrays	This lesson introduces students to the concept behind the Distributive Property of
Lesson Plan	Multiplication. Students will decompose arrays into smaller parts and write the
	corresponding multiplication sentence for each smaller array.
Representational-Abstract	
One with a Bun	In this lesson students will explore the Multiplicative Identity Property of 1, using
Lesson Plan	array and equal-group models. Students will model story problems, translate
	problems into equations and identify patterns to develop understanding of the
Representational-Abstract	Multiplicative Identity Property of 1.
Zero on a Hero	Students will explore the Zero Property of Multiplication using array and equal-
Lesson Plan	group models for multiplication. Students will model story problems, translate
	problems into multiplication facts and identify patterns to develop understanding
Representational-Abstract	of the Zero Property of Multiplication.
Amazing Arrays	This is a hands-on lesson for introducing and practicing building arrays to create
Lesson Plan	models that represent the distributive property of multiplication, and then using
	those arrays to draw models of the equations they represent.
Concrete-Representational-Abstract	

Fall Fun and Games Using the Commutative Property	In this lesson, students will build and manipulate a variety of arrays in the context
Lesson Plan	of creating games for a Fall Festival. They will practice using the Commutative
	Property of Multiplication to find related multiplication facts.
Concrete-Representational-Abstract	
Checking ID's	Students will learn, understand and use the Identity Property of Multiplication as
Lesson Plan	well as the Zero and Commutative Properties to solve multiplication problems
	involving factors of 0 and 1.
Concrete-Representational-Abstract	
Hungry Zero	The definition of the Zero Property of Multiplication will be presented and
Lesson Plan	discussed, along with a review of other vocabulary necessary for this lesson
	(factors, products, groups of, Commutative Property). The lesson will show the
Concrete-Representational-Abstract	process of multiplying by 0.

Break Apart and Put Together Representational-Abstract	Students are given two arrays, one representing the equation $7 \times 9 = 63$ and the other representing the equation $(5 + 2) \times 9 = 63$, to see if they recognize a relationship between the two.
Does It Work for Division? Abstract	Students are asked if the Commutative Property holds for division.
Meeting the Reading Goal Abstract	Students are given two problems to solve, one represented by the equation 4×6 = 24 and the other by the equation $6 \times 4 = 24$, to see if they recognize the answer to the second problem based on the Commutative Property.
Using the Associative Property of Multiplication Abstract	Students are asked to find the product of three numbers and are observed to see if they use the Associative Property to find the product more easily.

MAFS.3.OA.2.6 Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.

Grandma Wants to Know!	Help Mom and Dad tell Grandma about Cindy's trip to the carnival using bar models and arrays to relate division to multiplication with an unknown factor
	models and arrays to relate division to multiplication with an unknown factor.
Concrete-Representational-Abstract	
Three is NOT a Crowd!	This lesson will provide students with practical application activities to help them
Lesson Plan	understand how division is simply solving a problem with an unknown factor.
	Students will be given snacks in which they must share with their group members
Concrete-Representational-Abstract	equally.
Unknowns with Multiplication and Division Equations	In this Khan Academy tutorial video, students will find the number to replace the
Lesson Plan	symbol for the unknown in multiplication and division equations.
Abstract	

Alien Math	Students are told of a planet where division is not taught, and asked to rewrite division problems as multiplication problems to solve. The students are also asked
Abstract	to explain why it might be easier to solve as multiplication.
Changing Division Equations into Multiplication Equations	Students consider a division fact and are asked to turn it into a multiplication fact. If successful, they are asked to rewrite a basic division fact that they are not likely
Abstract	to know and which has a symbol for the unknown number.
Multiplication as the Inverse of Division	Students are given a word problem and asked to write an equation for the problem. Then the students are to select a multiplication equation that can also
Abstract	be used to solve the problem.
Using Multiplication to Solve Division Problems	Students are asked to solve a division problem using a calculator but without using the division key.
Abstract	

<u>MAFS.3.OA.3.7</u> Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.

Introduction to Multiplication Using Literature	This lesson plan can be used to introduce the concept of multiplication to
Lesson Plan	students through the use of literature. The story Amanda Bean's Amazing Dream
	is used to demonstrate the different ways to count items and how multiplication
Concrete-Representational	can make that process much faster.
Arithmetic	The students will be given multiplication and division problems which they must
Virtual Manipulative	answer. They also have the option of being given a number then stating the
	factors of how that number was attained using either multiplication or division.
Representational-Abstract	
Skip Counting to Multiply	Students will build a conceptual understanding of multiplication by creating a
Lesson Plan	hundreds chart, using different colors to assist them with skip counting by 2, 3, 5
	and 10. Students will discuss, "How many groups of (2, 3, 5 and/or 10)?" are in
Abstract	each number.
Product Game	This interactive game for two players develops students' fluency with
Virtual Manipulative	multiplication facts, their understanding of the relationship between factors and
	products and their strategic thinking.
Abstract	
Four in a Row Multiplication Game	In this interactive game, players use multiplication facts to cover four squares in a
Educational Game	row. Players must change one number from the previous player's turn to create a
	new fact. The products from each turn of play are covered on the game board.
Abstract	
Alien Munchtime Division Game	This is an online game where students review division facts while feeding hungry
Educational Game	aliens. The user can set the amount of fact families they want to play with from 2
	to 12.
Abstract	
Arithmetic Workout	This interactive Flash applet offers three ways for students to practice basic fact
Educational Game	skills related to multiplication and division.
Abstract	

Making Sense of Multiplication to Build Fluency	This lesson will help students multiply numbers with factors of 6, 7, 8 or 9 through
Lesson Plan	decomposing numbers in an array and applying the distributive property.
	Teaching students how to use an array can give them a visual representation of
Concrete-Representational-Abstract	the final product.

Fluency with Basic Multiplication Facts	Students are assessed on their fluency with multiplication facts for the products of two one-digit numbers.
Abstract	
Fluency with Division	Students are assessed for fluency with division.
Abstract	
Fluency with Multiplication	Students are assessed for fluency with multiplication.
Abstract	
Using Flexible Strategies	Students are asked to describe two different ways to find the product of two
	numbers.
Abstract	

MAFS.3.OA.4.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Getting the Hang of Two-Step Word Problems	Students will solve two-step word problems involving subtraction and division
Lesson Plan	and represent these problems using equations with a letter standing for the
	unknown quantity.
Representational-Abstract	
Multiplying Numbers: Fall Festival Extravaganza	Students will organize and analyze data to create equations with variables.
Lesson Plan	Students will use their understanding of equations to solve two-step word
	problems using data collected from the Morgan Woods Fall Festival Supply Sheet.
Representational-Abstract	
The Stamp Collection	The task will have students create an equation to represent a multistep word
Problem-Solving Task	problem and solve the problem using a variety of operations.
Abstract	

Bake Sale	Students solve a two-step word problem involving addition and division and then write an equation to represent the problem.
Abstract	
Books at the Book Fair	Students solve a two-step word problem involving multiplication and subtraction and then write an equation to represent the problem.
Abstract	
Zoo Field Trip	Students solve a two-step word problem involving subtraction and division and then choose an equation that represents the word problem.
Abstract	

MAFS.3.OA.4.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.

The Power of Patterns	Students will solve a real world problem to discover similarities and differences
Lesson Plan	between the patterns of adding 2 to a number and doubling a number. The
	problem is set in the real world context of twin brothers who choose different
Representational-Abstract	patterning strategies given by their grandma to save for buying a car.
Tricky Rice Math Patterns	This is a 3rd grade MEA that requires students to use mathematical patterns to
Lesson Plan	solve the problem, along with the analysis of data. After reading One Grain of Rice
	by Demi, students will look for ways to help Rani's relative find a new pattern.
Representational-Abstract	
Number Line Bars	A versatile tool that can be used to illustrate the operations of addition,
Virtual Manipulative	subtraction, multiplication and division.
Representational-Abstract	
Addition Patterns	The purpose of this task is to study some patterns in a small addition table. Each
Problem-Solving Task	pattern identified persists for a larger table and if more time is available for this
	activity students should be encouraged to explore these patterns in larger tables.
Representational-Abstract	
Symmetry of the Addition Table	The goal of this task is to help students understand the commutative property of
Problem-Solving Task	addition by examining the addition facts for single digit numbers. This is
	important as it gives students a chance to do more than memorize these
Representational-Abstract	arithmetic facts, which they will use throughout their education.
Making a Ten	This task asks students to study more carefully the make-a-ten strategy that they
Problem-Solving Task	should already know and use. In this strategy, knowledge of which sums make a
	ten, properties of addition and subtraction and identifying patterns are used to
Representational-Abstract	evaluate sums which are larger than 10.
Patterns in the Multiplication Table	The goal is to look for structure and identify patterns and then try to find the
Problem-Solving Task	mathematical explanation for this. This problem examines the checkerboard
	pattern of even and odd numbers in a single digit multiplication table.
Representational-Abstract	

Adding Odd Numbers	Students are asked to consider what type of number results when adding two odd numbers and when adding three odd numbers.
Abstract	
Adding Odds and Evens	Students are asked to consider the parity of the sums of two even numbers, two odd numbers and an even and an odd.
Abstract	
Decomposing Into Equal Addends	Students are presented with an equation and asked to find a pattern within the equation and to determine if the equation is true or not.
Abstract	
Multiplication of Even Numbers	Students are asked to determine if the total number of students in five classes will be even or odd.
Abstract	
Patterns with the Multiplication Table	Students are asked to find the missing numbers in a column of a multiplication table by using a pattern found within the table.
Abstract	